Minggu, 17 April 2011

Balok

B. Balok

Banyak sekali benda-benda di sekitarmu yang memiliki bentuk seperti balok. Misalnya, kotak korek api, dus air mineral, dus mie instan, batu bata, dan lain-lain. Mengapa benda-benda tersebut dikatakan berbentuk balok? Untuk menjawabnya, cobalah perhatikan dan pelajari uraian berikut.

1. Pengertian Balok

Perhatikan gambar kotak korek api pada Gambar 8.12 (a). Jika kotak korek api tersebut digambarkan secara geometris, hasilnya akan tampak seperti pada Gambar 8.12 (b) . Bangun ruang ABCD.EFGH pada gambar tersebut memiliki tiga pasang sisi berhadapan yang sama bentuk dan ukurannya, di mana setiap sisinya berbentuk persegipanjang. Bangun ruang seperti
ini disebut balok. Berikut ini adalah unsur-unsur yang dimiliki oleh balok ABCD.EFGH pada Gambar 8.12 (b) .

a. Sisi/Bidang
Sisi balok adalah bidang yang membatasi suatu balok. Dari Gambar 8.12 (b), terlihat bahwa balok ABCD.EFGH memiliki 6 buah sisi berbentuk persegipanjang. Keenam sisi tersebut adalah ABCD (sisi bawah), EFGH (sisi atas), ABFE (sisi depan), DCGH (sisi belakang), BCGF (sisi samping kiri), dan ADHE (sisi samping kanan). Sebuah balok memiliki tiga pasang
sisi yang berhadapan yang sama bentuk dan ukurannya. Ketiga pasang sisi tersebut adalah ABFE dengan DCGH, ABCD dengan EFGH, dan BCGF dengan ADHE.

b. Rusuk

Sama seperti dengan kubus, balok ABCD.EFGH memiliki 12 rusuk. Coba perhatikan kembali Gambar 8.12 (b) secara seksama. Rusuk-rusuk balok ABCD. EFGH adalah AB, BC, CD, DA, EF, FG, GH, HE, AE, BF, CG, dan HD.

c. Titik Sudut

Dari Gambar 8.12 , terlihat bahwa balok ABCD.EFGH memiliki 8 titik sudut, yaitu A, B, C, D, E, F, G, dan H. Sama halnya dengan kubus, balok pun memiliki istilah diagonal bidang, diagonal ruang, dan bidang diagonal. Berikut ini adalah uraian mengenai istilah-istilah berikut.

d. Diagonal Bidang

Coba kamu perhatikan Gambar 8.13 . Ruas garis AC yang melintang antara dua titik sudut yang saling berhadapan pada satu bidang, yaitu titik sudut A dan titik sudut C, dinamakan diagonal bidang balok ABCD.EFGH. Coba kamu sebutkan diagonal bidang yang lain dari balok pada Gambar 8.13 .

e. Diagonal Ruang

Ruas garis CE yang menghubungkan dua titik sudut C dan E pada balok ABCD.EFGH seperti pada Gambar 8.14 disebut diagonal ruang balok tersebut. Jadi, diagonal ruang terbentuk dari ruas garis yang menghubungkan dua titik sudut yang saling berhadapan di dalam suatu bangun ruang. Coba kamu sebutkan diagonal ruang yang lain pada Gambar 8.14 .

f. Bidang Diagonal

Sekarang, perhatikan balok ABCD.EFGH pada Gambar 8.15. Dari gambar tersebut terlihat dua buah diagonal bidang yang sejajar, yaitu diagonal bidang HF dan DB. Kedua diagonal bidang tersebut beserta dua rusuk balok yang sejajar, yaitu DH dan BF membentuk sebuah bidang diagonal. Bidang BDHF adalah bidang diagonal balok ABCD.EFGH. Coba kamu sebutkan bidang diagonal yang lain dari balok tersebut. Untuk lebih jelasnya, coba kamu perhatikan dan pelajari Contoh Soal 8.4

Image:ruang_11.jpg

2. Sifat-Sifat Balok

Balok memiliki sifat yang hampir sama dengan kubus. Amatilah balok ABCD. EFGH pada gambar di sam. ping. Berikut ini akan diuraikan sifat-sifat balok.

a. Sisi-sisi balok berbentuk persegipanjang.

Coba kamu perhatikan sisi ABCD, EFGH, ABFE, dan seterusnya. Sisi-sisi tersebut memiliki bentuk persegipanjang. Dalam balok, minimal memiliki dua pasang sisi yang berbentuk persegi panjang.

b. Rusuk-rusuk yang sejajar memiliki ukuran sama panjang.

Perhatikan rusuk-rusuk balok pada gambar disampin.g Rusuk-rusuk yang sejajar seperti AB, CD, EF, dan GH memiliki ukuran yang sama panjang begitu pula dengan rusuk AE, BF, CG, dan DH memiliki ukuran yang sama panjang.

c. Setiap diagonal bidang pada sisi yang berhadapan memiliki ukuran sama panjang.

Dari gambar terlihat bahwa panjang diagonal bidang pada sisi yang berhadapan, yaitu ABCD dengan EFGH, ABFE dengan DCGH, dan BCFG dengan ADHE memiliki ukuran yang sama panjang.

d. Setiap diagonal ruang pada balok memiliki ukuran sama panjang.

Diagonal ruang pada balok ABCD.EFGH, yaitu AG, EC, DF, dan HB memiliki panjang yang sama.

e. Setiap bidang diagonal pada balok memiliki bentuk persegipanjang.

Coba kamu perhatikan balok ABCD.EFGH pada gambar. Bidang diagonal balok EDFC memiliki bentuk persegipanjang. Begitu pula dengan bidang diagonal lainnya.

Image:ruang_12.jpg

4. Jaring-Jaring Balok

Sama halnya dengan kubus, jaring-jaring balok diperoleh dengan cara membuka balok tersebut sehingga terlihat seluruh permukaan balok. Coba kamu perhatikan alur pembuatan jaring-jaring balok yang digambarkan pada Gambar 8.16

Image:ruang_13.jpg

Image:ruang_14.jpg

5. Luas Permukaan Balok

Cara menghitung luas permukaan balok sama dengan cara menghitung luas permukaan kubus, yaitu dengan menghitung semua luas jaring-jaringnya. Coba kamu perhatikan gambar berikut.

Image:ruang_15.jpg

Image:ruang_16.jpg

6. Volume Balok

Proses penurunan rumus balok memiliki cara yang sama seperti pada kubus. Caranya adalah dengan menentukan satu balok satuan yang dijadikan acuan untuk balok yang lain. Proses ini digambarkan pada Gambar 8.18 . Coba cermati dengan saksama.

Image:ruang_17.jpg

Gambar 8.18 menunjukkan pembentukan berbagai balok dari balok satuan. Gambar 8.18 (a) adalah balok satuan. Untuk membuat balok seperti pada Gambar 8.18 (b) , diperlukan 2 × 1 × 2 = 4 balok satuan, sedangkan untuk membuat balok seperti pada Gambar 8.18 (c) diperlukan 2 × 2 × 3 = 12 balok satuan. Hal ini menunjukan bahwa volume suatu balok diperoleh dengan cara mengalikan ukuran panjang, lebar, dan tinggi balok tersebut.

Image:ruang_18.jpg

Untuk lebih jelasnya coba, pelajari Contoh Soal 8.7 berikut ini.

Image:ruang_19.jpg

Image:ruang_20.jpg

Tidak ada komentar:

Poskan Komentar